Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Adicionar filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano
1.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.12.22.473804

RESUMO

The novel SARS-CoV-2 variant, Omicron (B.1.1.529) contains an unusually high number of mutations (>30) in the spike protein, raising concerns of escape from vaccines, convalescent sera and therapeutic drugs. Here we analyze the alteration of neutralizing titer with Omicron pseudovirus. Sera of 3 months after double BNT162b2 vaccination exhibit approximately 18-fold lower neutralization titers against Omicron. Convalescent sera from Alpha and Delta patients allow similar levels of breakthrough by Omicron. However, some Delta patients have relatively preserved neutralization efficacy, comparable to 3-month double BNT162b2 vaccination. Domain-wise analysis using chimeric spike revealed that this efficient evasion was, at least in part, caused by multiple mutations in the N-terminal domain. Omicron escapes the therapeutic cocktail of imdevimab and casirivimab, whereas sotrovimab, which targets a conserved region to avoid viral mutation, remains effective against Omicron. The ACE2 decoy is another virus-neutralizing drug modality that is free, at least in theory, from mutational escape. Deep mutational analysis demonstrated that, indeed, the engineered ACE2 overcomes every single-residue mutation in the receptor-binding domain, similar to immunized sera. Like previous SARS-CoV-2 variants, Omicron and some other sarbecoviruses showed high sensitivity against engineered ACE2, confirming the therapeutic value against diverse variants, including those that are yet to emerge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA